Web Mash-ups and Patchwork Prototyping: User-driventechnological
innovation with Web 2.0 and Open Source Software

Ingbert R. Floyd, M. Cameron Jones, Dinesh Ratlchislel B. Twidale
University of lllinois at Urbana-Champaign
Graduate School of Library and Information Science
{ifloyd2,mjones2,drathi,twidale}@uiuc.edu

Abstract

to solve: for example, they are new to campus and
want to know where to eat, so they built a web mash

The recent emergence of web mash-ups and openUp to map restaurants using Google Maps. These

source software is driving the development of new
practices in software and systems developmenhis$n t
paper we explore novel practices of user-driven
innovation through an examination of several case
studies which illustrate how users and developees a
exploiting the proliferation of open APIs and open
source systems. Developers can rapidly create proof
of concept that are robust enough for actual use by
combining preexisting software components. The
underlying programming processes involved make use
of tried-and-true software development techniques,
and may not appear innovative at first. Howeveg th
application of these practices and techniques to
problem solving by non-programmers shows a high
degree of creative innovation, giving rise to neaysv

of thinking about technology design and production.

1. Introduction

Web 2.0 and open-source software are but two of
the recent trends in software development
characterized both by new technologies and by new
mindsets on how to do application development.
These trends are capturing the imagination of
practitioners and academics alike, stimulating
creativity, innovation, and a flurry of attempts to
anticipate how the landscape will stabilize e.81]]
[24]. The focus, however, is often on technologyor
the new business models that are emerging.

It is easy to forget that most people are intetkste
technology primarily for how it can help them ireth
everyday life activities. One of the authors rebent
taught an Introduction to Web Technologies class
geared for non-programmers, where the final project
involved creating a prototype of a web mash-up.
Invariably, the students described their projects i
terms of an immediate, pressing problem in their
everyday life which they were creating a web magh-u

everyday life activities can involve aspects or
combinations of work, personal life, school, efcisl
interesting is how similar patterns of technologica
innovation, appropriation, and use are emerging in
practice by people involved in seemingly very
different types of activities: design environments,
community building, and classroom learning.

In this paper we take a step back and look at two
kinds of user-driven, emergent practices: web mash-
ups and a design technique we call patchwork
prototyping. Our purpose is to understand how the
affordances of recent trends are enabling these two
practices, why they suddenly are so prominent, and
how they capture the creativity, needs and desifes
the users who are driving the approaches. We intend
our analysis to provide insights which can be
integrated and merged with other rapid, collabweati
and participatory mechanisms to support innovative
explorations of design spaces, requirements capture
and methods for rapid prototyping and evaluation.

2. Web mash-ups

The original vision of the web was of a system for
academics to share information and data in the fafrm
documents [1]. The parallel development of concepts
like the semantic web [2], web services, Web 29],[1
and the architecture of participation, has resuited
multitude of new services, web sites, technologies],
protocols. Similar to earlier practices of software
reuse, these approaches involve sharing and
distribution. However, sharing need not be just of
documents but also of services, knowledge, ressurce
and objects. Distribution has also broadened, uit |
providing access to humans, but also to application

Web mash-ups, websites which combine data and
services from across the web, are an emerging.trend
The concept of mash-ups originated in the DJ music
culture, where the recent development of inexpensiv

professional-grade, music composition and mixing

software allowed musicians to create high-quality

remixes and to easily sample and recombine digital
music [10]. A music mash-up is a remix of musiafro
multiple sources. Similarly, a web mash-up combines
data and services from more than one source.

Weiss identifies an intriguing characteristic ofbwe
2.0 applications that is shared by web mash-ug: th
they are “... at the same time incredibly innovative
and yet—not” [25]. That is, from a computer science
perspective, the underlying technology and prastice
are not really innovative; software developers have
been sharing, reusing, and combining applicatioms a
code for decades, using code libraries, components
and APIs to speed up development, e.g. [11]. What i
innovative is how mash-ups are being widely used fo
the rapid realization of creative ideas which woléd
too time consuming, or expensive.

Through the use of publicly available APIs
(Application Programming Interfaces), mash-up
developers are able to access data, services,rcespu
and interface components, which they incorporat@ in
their new application. There are three aspects af w
2.0 APIs which facilitate innovation with mash-ups:

1. They provide access to highly developed, robust
technologies which only a large organization of
expert programmers could create;

. They provide access to massive amounts of content
which no individual could gather on their own or
afford to keep and maintain;

. They lower the barriers to developing creative
novel applications with powerful technologies.
Amazon.com was one of the first commercial sites

to release a free, public API for accessing their

content. Coupled with the API documentation were
code libraries and examples written in several
programming languages. Many applications were

written to interface with the Amazon database (e.g.

Delicious Library) but not explicitly called “web

programmableweb.com. Some estimate that as many
as 1,000 new applications are developed every six
months based on the Google Maps API alone [8].

The rapid explosion of mash-up development
activities must have some cause. We have noticad th
web mash-ups are often created by individuals or
small groups motivated by a particular problem who
are inspired to use the new Web 2.0 technologiés an
mindsets [19] to create a solution. The princigiatt
“every good work of software starts by scratching a
developer’'s personal itch” [21] originally used to
describe the success of the open-source software
(OSS) process also seems appropriate in
characterizing mash-up development, except that the
technologies of mash-ups are accessible to bollecki
and non-skilled programmers, and the process isrfas
than in typical OSS development.

One of the earliest web mash-ups was
housingmaps.com (Figure 1), created when its
developer, Paul Rademacher, was looking for a new
house. In examining the daily updated real-estate
listings on Craigslist he was confused by whichdesu
he had already seen. One day, he found himself
looking at a house he had just visited the previtas
[20], and decided he needed to do something about i
Organizing the listings geographically integratbe t
data around a common interface, which helped him
remember where he had already looked.

Given that such an application is only useful to a
person while they are actively searching for a bous
developing it as a single user without utilizingbwe
based APIs would have taken too long and been too
complicated to be of any practical value. He prdypab
would have found a house before a working system
could be finished. However, the mash-up approach
drastically reduced the development costs, makieg t
task of developing such an application feasible.

This development is analogous to the changes

mash-ups”. It wasn’'t until after the release of the
Google Maps system and the development of
housingmaps.com site in summer 2005, that the term
mash-ups was used to characterize websites.

The website programmableweb.com lists 221
different APIs which can be mashed-up. The availabl
APIs span a wide range of applications, including:
search engines, mapping applications,
messaging, weather data, blogs, RSS aggregators
image and video sharing, social networking, persona

and/or team information management systems, social|

bookmarking, wikis, and auction sites. Over 900
mash-ups have been registered at

instant |..

ForRent ForSale Rooms Sublets Powered by craigslist and Google Mags

10

AAAAA Feecback

Price: Show Fiters"="

Refiesh

$1500- 82000 [, Link

city: [Los Angeies
B o

ty 208 &

@ #1550 30 2oesnon

AL @ 1755 2 Lae
KB
>

T
O, e
e
. insi
Qe o5
D)
WG 35e75is s ama

W

Y $1500- 1bd
Sweet Craftsman Cottage For
ic link inside — phit

O
(6}
o

3| O

| o

1 O
@+
O s

B @ s

‘Santa Morica Mins 1
Roc Aro

Maywood
Huntinglon Park

GCogle em—1—

= e |
oo i e et

programmableweb.com at an average rate of three new
mash-ups registered every day. Not all mash-ups
which have been created are registered at

Figure 1. Housingmaps.com shows real -estate

listings from Craigslist in Google Maps

which arose out of the introduction of spreadshéets
early PCs in the 1980s. Before the advent of the
spreadsheet, numerical computing required the
expertise of both programmers and mathematicians.
Applications were custom built to address particula
problems and took months to implement, and often di
not satisfy all of the requirements [8]. Spreadshee
revolutionized numeric computing in organizatiorns b
providing a reusable framework for rapidly testarg
developing numeric applications. Users were able to
create and share a wide range of (but not all)
mathematical applications such as payrolls, budgets
and numerical models, quickly and easily [17].

It is true that creating mash-ups does require
detailed knowledge of how particular APls are
structured and a solid foundation in web techna@sgi
and protocols. Currently, this may restrict

development to experienced programmers. However, .

the key to lowering the barrier to mash-up
development probably lies in the development of
toolkits, wizards, and other systems which canlblac
box much of the esoteric details of the
implementation, or provide an end-user interface to
facilitate creating mash-up code. This can alrebey
seen in sites like mapbuilder.net and wayfaring.com
which provide simple to use web interfaces for
creating Google Maps mash-ups. While the
development of such programming aids will broaden
the accessibility of mash-up programming, they will
necessarily be unable to provide users with futless

to the complete flexibility of a programming langea
much as spreadsheets can only support a subs#t of a
mathematical applications.

3. Patchwork prototyping

We use the term patchwork prototypes to describe
applications developed using a different design
process than web mash-ups.
use combinations of web services, mash-ups, locally

community-based initiatives where developers create

an environment which is flexible enough for

community members to continue to contribute to the

development process without the developers’ aidl [13
The key to the method is that it is user-drivene Th

development proceeds and design decisions are made

based on the users’ collaborative experience of

integrating the software into their every-day atieg,

not based on abstract design principles or prexfisti

of what the users might need.

3.1. Description of patchwork prototyping

Patchwork prototyping has three key components:
Rapid iteration of high-fidelity prototypes;
Incorporation of the prototypes by the end users
into their daily work activities;

Extensive collection of feedback facilitated by an
insider to the user community.

When integrated, these components create a sugtessf
design because developers gain access to and despon
to the needs of users while those needs are co-
evolving, both due to the effects of the introdotdf

the software, and due to the ever-changing work or
community environment.

Patchwork prototyping is a participatory design
technique, as it is a type of cooperative protatgpi
[4], [15]; however, it blends the design and
implementation phases of the development process,
because the prototype is incorporated almost
immediately into users’ everyday activities, and
because production-scale modules can gradually be
introduced as they have been created to replace the
OSS applications that were used as prototypes to
develop the requirements.

Patchwork prototyping requires a design team
consisting of both developers and representatifes o
every kind of user. The method entails the follayvin

Patchwork prototypes five stages, and an entire iteration normally takes

longer than a week:

developed code and open source software. Both web 1. Make an educated guess about what the target

mash-ups and patchwork prototyping emphasize the
central importance of direct user involvement,
mitigating lengthy development periods between idea
conception and realization.

The concept of patchwork prototyping originated
from the observations of Jones et al. on how
developers in a series of projects were using Q&S a

system might look like;

Select tools which support some aspect of the
desired functionality;

Integrate the tools into a rough composite;

Deploy the prototype, solicit feedback from users;
Reflect on the experience of prototype building and
on the user feedback, and repeat - quickly.

2.
3.
4.
5.

other software to which they had source-code access For the most part, these steps are relatively gittai

[12]. It is optimized for ill-defined situations wehe
neither the developers nor the users have a diear i
of what they need the software to do, but ratheeha
an idealized vision of the kinds of things compgtin
technology might enable users to accomplish.
Patchwork prototyping is also compatible with

forward. We provide a summary of the method below,
but for a more in depth discussion see [12].

Making the first educated guess about what the
target system might look like is the hardest step,
because it requires the design team to synthds&e t
collective knowledge and understanding of the

problem into a coherent design. In early iteratiofis
the process it is often helpful to use paper pypies
and scenarios but their function is primarily toveeas
communication devices and brainstorming aids. The
high equivocality of the situation almost guarastee
that whatever design is produced will be insuffitie
This is not a failure. It is an expected part oé th
process, and the design will be improved on
subsequent iterations. The important thing is teeha
starting point which can be made concrete, andmot
spend more than a couple of weeks hashing out,ideas
unless the problem space is still being explorete T
key is not to become bogged down in controversies
about how the software ‘ought’ to look, but rather
put together a prototype and test it out with users
their everyday environments and let the users égur
out what works, what does not, and what is missing.
The rapid iteration and high-fidelity nature of the
prototypes is vital to patchwork prototyping. High-
fidelity is necessary because many users have
difficulty imagining what software described by eth

provides users with a constant flow of new design
possibilities, which gives them the capability to
criticize particular instances of the prototype. In
addition, the design team can improve their
understanding of the broader sociotechnical system
[14], [23], because they have seen many desigrsidea
fail, and come to an understanding of why each of
them failed from the users’ feedback. Ultimatetyisi
impossible to reach complete understanding of the
system given its evolving nature. However, by
iterating the prototyping process, the design spaag
narrow, identifying a set of key requirements. Aist
point the design is not complete, but work on a
flexible production-scale system can begin, anthur
exploration of the design space can be continued
within that system.

The rapid iteration of high-fidelity prototypes has
long been the holy grail in prototyping research.
Concepts like horizontal vs. vertical prototypesada
high-fidelity vs. low-fidelity prototypes [9], [18}vere
developed specifically to understand and take

methods such as paper prototypes, scenarios, oradvantage of the trade-offs involved in picking one

feature descriptions will actually do, and how they
might incorporate it into their daily activitiesgJL In
such discussions users might get excited and mentio
several possibilities, but those possibilities wftarn
out not to be feasible for a number of reasons

unforeseen by either the users or the developers

(sometimes for reasons that are impossible to éa)es
Rapid iteration is vital for both social reasong an
design improvement. Socially, rapid iteration is

important because users are embedded in their own,

hectic environment. In a work environment users’
focus is on getting their job done, meeting deadljn
dealing with office politics, etc., not on desiggin
software to support these activities. Thus, useils w
quickly become frustrated with long turn-around

prototyping technique over another. It is only witie
development of Web 2.0 APIs, techniques and
mindsets, and with the rapid proliferation of high
quality OSS software that we are truly close to
realizing this vision.

Patchwork prototyping takes full advantage of
these new technologies. The basic form for such a
prototype is a modular patchwork of various OSS
applications and Web APIs. These can easily be
switched in and out, turned on or off, or reconfegl
in how they are wrapped into the interface. The
minimal effort required to add features allows
programmers to treat them as disposable, becdtlse li
effort was needed to implement them, so little iff®
wasted when they are switched off or discardeds Thi

times, and become dependent on and adapted tofacilitates the requirements gathering processalse

particular implementations which are less than lidea
When a particular prototype has been in use for an
extended period of time, users no longer feel tiay

are trying out a prototype and start thinking abttet
system as a final product. Additionally, fast respe®
times make users feel like an integral part of the
process, where what they contribute is immediately
used to improve the software. Maintaining such
feelings is vital in order to keep obtaining highadjty
feedback from users, and to prevent indifferenoenfr
setting in about the design process.

Rapid iteration also improves the quality of the
design. It allows for the exploration of more faat
and alternatives. This can uncover overlooked dspec
of the system which might be of use. This can also
reinforce the importance or necessity of particular
features or requirements. Furthermore, iteration

iterations of the prototype can be rapidly createith

high functionality, at low cost. Deciding between
shallow and deep integration, however, can be a
matter of considering the tradeoffs between having
data flow between modules vs. increasing the tgcili
of exchanging one application for another. The iy

to have a prototype where there are many featurés a
options which can be easily turned on, off, andkbac
on again as users require or wish to explore, thus
allowing users to explore via action, trial, andoer
rather than by trying to conceptualize preciselyho
the system will work ahead of time.

Access to the source code of component
applications and the freedom to modify it is not an
essential prerequisite to development by integnatio
Over many years public APIs to closed proprietary
source code have facilitated the development of

thousands of innovative applications in various
software platforms. Nevertheless, source code acces
can be very useful. Without it, developers are tkohi

in how well they can patch different modules togeth
in which features they can enable or disable, iw ho
quickly they can enable or disable them, in howythe
create a visual integration with the rest of thetam,
and in their ability to understand the underlying
complexity of the code which they are integrating —
and will likely have to rewrite themselves for the
production scale version. By using and delving into

the open-source code, developers can get a feel for

how complicated it will be to implement a partiaula
feature robustly, and can make better estimatethéor
costs to implement a particular feature.

During deployment of the prototype, users integrate
the software into their work practices for an exiesh
period of time and collaboratively explore whatythe
can do with it. The feedback of user experiences
allows requirements gathering which is not purely
need-based, but also opportunity- and creativiseda
By seeing a high-fidelity prototype of the entire
system, users can develop new ideas of how taeitili
features, and conceptualize new ways of
accomplishing their work. In addition, users will
become aware of gaps in functionality which need to
be filled, and can explain them in a manner that is
more concrete and accessible to the developers.

When reflecting on the collected feedback,
however, the design team (including representatifes
all stakeholders) must realize that the prototypesd
not simply elicit technical requirements; it elgit
requirements for the collaborative sociotechnical
system as a whole. The existence of the prototype
creates a technological infrastructure which inflees
the negotiation of the social practices being dmped
by the users via the activities the infrastructafferds
and constrains [16]. The design team must be aofare
how features of the prototype are affecting the
development of social practice, and must consider h
to redesign the system so that desired social ipeact
are supported and encouraged by the structureeof th
system (in addition to any social means of
encouraging or requiring the practices). The design
team must also be sensitive to the needs of usdrs n
on the design team, in order to avoid creating
deleterious power imbalances which will doom the
effort to create an acceptable collaborative systém
disempowered will not be interested in collabomgtin
By allowing users to interact with the prototypes f
extended periods, collecting feedback on their
experiences, and paying attention to the social
consequences of the cyberinfrastructure, a richer
understanding of the sociotechnical system as dewho
can emerge. Reflection is a process of attendinbdo

consequences of the design on the broader
sociotechnical system, and integrating these into a
holistic understanding of how the system is evajvin

4. Case studies

In this section we present four case studies which
illustrate various aspects of creating mash-ups or
patchwork prototypes. The examples are meant ® giv
a flavor of the two methods, and to illustrate savfie
their relative advantages.

4.1. Wasabe: an example mash-up

The authors developed a web mash-up called
Wasabé (an acronym for the Wikipedia-Amazon
Search And Browse Environment) as a prototype
hybrid library catalog system that allows users to
search within a single interface both the detailed
bibliographic information typically found in librar
catalogs as well as more general information atroat
topic of interest, typically found in encyclopedias
(Figure 2). Wasabe is a mash-up that demonstréites a
three key features of most mash-ups: the use of the
computational power of web services, access teelarg
amounts of real content, and the speed with which
mash-ups can be created with a minimum of effort.

The first version of this system used the Amazon E-
Commerce API and the Google SOAP Search API to
execute a user-initiated search of both Amazonakbo
database and Wikipedia's articles (this functiayab
now present in the A9 search engine which allows fo
side-by-side searching of multiple sources; thst fir
Wasabe prototype was created before the A9 release)
The authors were able to build the first Wasabe
prototype in less than 10 minutes, writing only 100
lines of PHP code.

Two subsequent revisions have been made to
Wasabe to connect the search results to our
university’s library catalog system. The second

Figure 2. Wasabe mash -up prototyping a
hybrid library catalog search.

version added 30 more lines of PHP code. Thesa extr
lines expanded the functionality in two ways: first
they recursively searched the Amazon databaseg usin
Amazon’s recommendations to find related items and
their ISBN's; second, the ISBN’'s were appended to a
library web catalog search URL, used to query the
catalog and determine whether the book was availabl
Searching the library’s catalog on the server side
proved to be too slow, so a third version was wemitt
using AJAX (Asynchronous JavaScript And XML)
techniques to perform the same operation and load t
data on the client side. This version has a conabine

total of 125 lines of JavaScript and PHP code.

While the final version had three times more code
than the first, the total amount is still very shal
considering the functionality it provides. It issal
worth noting that very little of the code in anyrsien
is significantly more complex than simple looping
operations to count things up or print things out.
Despite being created by an experienced programmer,
the speed at which Wasabe was created and the
simplicity of the underlying code were amazing.

The access to large amounts of real content was
also vital to Wasabe’'s success as a proof of cdncep
The nature of the research question being askéukin
Wasabe development necessitated a large catalog o
books, a database of user browsing and purchasing
habits, and an extensive encyclopedia of infornmatio
Arguably, such a prototype could only exist as &lma
up. Attempts to prototype the system using a small
sampling of data or a mocked-up database of records
would be unlikely to have yielded many insightsint
its utility as it would have constrained the user
experience to performing artificial tasks. By
harvesting real data, the authors were able to
demonstrate the utility of including both bibliogkac
and contextual information within the same integfac

4.2. Teaching, simplifying and democratizing
mash-ups

As mentioned above, mash-up development
currently requires a diverse knowledge and skitl se
We suspect that most of the confusing details afhma
up creation are not inherent to the concept andbean
simplified through a mixture of social (teachingdan
explaining) and technical (better design environisien
and toolkits) means. Through such means the barrier
to creating web mash-ups can be lowered even farthe

As a preliminary investigation of this, one of the
authors recently taught an undergraduate course on
Web Technologies as part of a Minor in Information
Technology Studies. Students were sophomores,
juniors, and seniors from a range of majors incigdi
graphic design, psychology, political science, fice,

Figure 3. Campus route planner mash -up built
by students to help plan a class schedule.

comparative literature, media studies, and rhetoric
most students had no prior programming experience.
As part of a 15-week semester covering a range of
other topics, the students’ final team projectsener
build a prototype web mash-up of their choosinggsi
their newly-gained knowledge of HTML, XML, CSS,
JavaScript and other related technologies. Allhef t
groups took a very need-oriented approach to the
project and developed ideas which satisfied peeckiv

fneeds in the students’ lives.

One team decided to tackle a common problem
with course registration [7]. As new undergraduates
unfamiliar with all of the buildings on a large cpns,
they had each experienced the pains of having
scheduled consecutive classes at opposite ends of
campus, leaving them an impossible distance toscros
in the ten minutes between classes. The team dkcide
to create a web mash-up which would combine course
time and location information with a map-based
interface, so that students could see how far @part
buildings were and plan their schedule accordingly.

The prototype combined Google Maps with a
sampling of courses harvested from the university
timetables. In the campus route planner mash-up,
when students select a course, it is added to dadiy
route, showing them the distance they would have to
travel and giving them an overall picture of howanu
walking they would have to do each day (Figure 3).

Most of the students in the class had no prior
programming experience, and the only experience the
class provided them with was a brief introduction t
JavaScript. Yet by the end of the course they \able
to create functional prototypes. Their primary nogth
for creating prototypes was to copy code from @xist
mash-ups and modify and incorporate it into th@ino
work. This suggests that an explosion of web mash-
ups made by non-technophiles similar to the expéosi
growth of the web by non-technophiles copying
HTML pages is a distinct possibility in the neatufie.

4.3. Patchwork prototyping
collaboratory

in a cyber-

We were involved in a project building a
cyberinfrastructure for environmental engineers. In
this project, the developers built a prototype
cybercollaboratory using as the foundation an open-
source portal called Liferay. One of the key feasuof
this project was how rapidly the prototypes were
created (new iterations were often ready in leas tn
week), and, as a result, how un-invested the
developers were in any particular version of the
prototype. The following example illustrates how
through user feedback a particular function witthia
prototype was changed over time.

At an early stage, based on feedback from the
stakeholders, a need was identified for users to
collaboratively edit documents in the system. To
provide this functionality the developers simply
enabled a wiki portlet available for Liferay. Hovesy
users found the wiki too difficult to use, partlgdause
of confusion with the wiki-markup syntax, and pgrtl

the tool for exploring the nature of what should be
built next, for example by generating and refining
scenarios. They wanted the tool kept visually didti
from the other functions of the system because they
saw it as a separate module of the system, devoted
entirely to a particular task. This difference ieeds

and use raises two issues. Firstly there is thenmmm
problem of uncovering the different uses and users
that the software needs to accommodate, which leads
to various incremental design tradeoffs. But
additionally, there is an interesting consequente o
being able to develop prototypes that are robust
enough for some everyday use. This led to realkie
needs interacting with more conventional
experimenting with a proof of concept. Without
paying attention to how social roles and workflows
were evolving, the designers would have been unable
to properly incorporate the tool into the system.

The Liferay portal offered developers the
opportunity to explore other features as well via
tighter integration with the extensible Liferay
framework. The developers built prototypes of

because they had no immediate tasks which clearly research tools for monitoring developments on the
lent themselves to the use of the tool. Later, some Web using the Heritrix web crawler and Lucene gearc

members of the design team wanted to demonstrate €ngine; incorporated a prototype of a GIS system

the usefulness of scenarios and personas in &diilit
requirements gathering. Based on their prior
experience of success with this approach they
suggested using a wiki. In response to this recamst
the prior difficulties in using the bundled wikihe
developers installed MediaWiki on the server, and
added a link from the CyberCollaboratory's menut nex
to the existing wiki tool pointing to the MediaWiki
installation. No time was spent trying to integréte
Liferay and MediaWiki systems; each application had
separate interfaces and user accounts. They wéye on
connected by a simple hyperlink and thus in users’
conceptions. A benefit of using MediaWiki was tiat
allowed people to use the system without logging in
thereby mitigating the need to integrate authetitina
mechanisms. Users found the MediaWiki system
significantly easier to learn and use, and becaagere
adopters, using it exclusively over the built-iffdray
wiki. The wiki was later embedded in the Liferay
system wusing an HTML IFRAME, and the

using the open-API Google Maps system; and built an
awareness monitor using RSS feeds. They also used
numerous existing portlets already written for Lafg

Not all of the imported applications were publicly
available OSS; some were in-house applications
developed by other projects, for which developerd h
complete access to the source code. These were used
to build a data-mining application and a knowledge
management tool.

Common through all of these experiences was the
relative ease with which the developers were able t
rapidly explore different options and variationsheT
prototype changed over time reflecting the devaispe
evolving understanding of users’ needs.

4.4. Patchwork prototyping in community
inquiry labs

Community Inquiry Labs (iLabs) are part of a
project investigating the design and development of

authentication mechanisms of the two systems were web-based tools to support inquiry-based learnimdy a

eventually integrated.

As users began incorporating the prototype into
their daily activities, it quickly became clear tha
different users in different social contexts needed
different means of interacting with the tool. Some
people in administrative roles needed the collabaa
editing functionality integrated with the rest dfetr
real-life administrative activities, because thaasw
their primary use of the tool. Others were mos#ing

teaching. The iLabs system allows groups of users t
create a collaborative space, customized in the
number, type, presentation and description of wrio
core tools to support information creation and sigar
communication and collaborative interaction. Insthi
example we focus on the ease of integrating OSS int
an existing prototype.

In the earliest version of iLabs, users expressed a
interest in having a bulletin board tool. The depelrs

selected the phpBB system and manually installed
copies of phpBB for each community that wanted a
bulletin board; the bulletin board was simply
hyperlinked from the community's iLab.

In the next iteration of the prototype, the phpBB
system was modified to be more integrated with the
rest of the prototype. The integration of phpBBk@o
developer an afternoon and required modification of
one file in the phpBB system, adding about 25 lioks
new code (much of it copied from other functions in
the phpBB code) and modifying two other lines
elsewhere in the same file. A function was added to
the iLabs source (about 30 lines of code) contginin

creating web services and OSS has already disabvere
and overcome a whole series of bad design ideas the
hard way, which is something the mash-up or
patchwork prototype developer would need to re-
experience using traditional methods. As such,ehes
approaches seem to get to the heart of the prcande
potential of software reuse, advocated in software
engineering research for many vyears but rarely
attaining the levels of adoption and efficiency
predicted for it.

The other perspective is social, involving the user
driven nature of both processes. There is a losigtyi
of technology users being side-lined in development

the SQL statements needed to create a phpBB forum The problem became so acute, that entire academic

and associate it with an iLab, and a hyperlink was
added to the interface to execute this function.

The minimal coding effort had a big payoff: it
integrated the full functionality of the phpBB syst
with iLabs. Users could now install a bulletin baar
themselves, without involving the developers, by
clicking a link on the interface. Furthermore, btif

board authentication and account management was

integrated with the rest of the prototype, elimimgt
the need for users to log in twice.

5. Discussion

There are two perspectives from which one can

fields such as Human-Computer Interaction (HCI),
Social Informatics (SI), and Science and Technology
Studies (STS) have developed in order to understand
and rectify this problem. However, even the most
democratic and inclusive methods for including sser
in the design process, such as participatory design
(PD), have only a mixed history of success.

The failures of PD are often attributed to an
incorrect application of the method [3], [5]. It is
interesting to note that many of the projects which
have used traditional PD techniques have been
initiated by management with the goal of increasing
workplace efficiency, software companies trying to
develop new software, or anybody else besides the

describe the similarities between web mash-ups and People who will actually be using the technology.

patchwork prototypes. One is technical, involvihe t

common property of drawing upon a disparate variety
of computational resources including APls, OSS, and
web services in general. The ease with which all of

While this fits with the overall PD agenda of
empowering workers and ensuring that new software
they are compelled to use does not adversely affect
their working conditions or job security, it islka far

these components can be combined and the relative €'y from technological innovation driven by user

power of the resultant combination are significant
when compared with the amount of time and effort it
would take to code a similar result in more
conventional ways, even with extensive use of
software libraries and other traditional forms ofle-
sharing. The sharing involved in using APIs and OSS
software goes beyond the sharing of algorithmscglpi

in code libraries. It is a sharing of development
experience, as the massive amount of effort put int

Figure 4. The user-driven model.

needs and desires [15].

Both web mash-ups and patchwork prototyping are
phenomena which have been observed first, and then
formally described, rather than invented delibdyate
and implemented according to a model of how things
work, or how things might work better. As a result,
they are reflective of the models users have fangus
technology in their lives: i.e., a problem driveoadel.
This emergent model seems to call for a reformutati
of the traditional concept of design.

In traditional models, like the waterfall model [22
the conception is usually linear, and can be captur
by the following oversimplification: Design Build

Use. The emergent user-driven approach calls for a
more circular model (Figure 4). In this model, the
starting point is people’s every-day lives. In toarse
of living their lives, they encounter problems. $ke
problems may be with existing technologies thay the
happen to be using, or they could be problems which
have little to do with technology, but which people
think that technology could be used to solve. Beeau

of the ease with which mash-ups can be constructed,

or patchwork prototypes restructured, a quick Bx i
built that addresses the immediate problem. This
building phase is then followed by a reflectionhmw

the new fix plays into the comprehensive desigthef

Similarly, patchwork prototyping would be
impossible without the vast array of high qualit$®
applications that exist today. Without this quality
code, developers would be unable to customize and
glue together applications as quickly and easihd a

system, and how else the need might be addressedwould have to forsake the speed that is the esdenti

through a reformulation of the current concepths t
system design. After the system has been adjusted t
take into account the new design, it is reintroduce
into people’s lives, and they continue with theiesy-

day activities until the next problem occurs. Thas,
key feature of this model is not just its shape tomts
quickly it is possible to cycle around it.

Of course iterative and spiral models have been
advocated for a very long time [6]. The methods
described here are in that tradition, but emphatize
impact that very rapid prototyping by assembly d-p

point of the technique. Without having several
different high-quality applications to choose fram
prototype any part of the system, it would not be s
easy to switch out a module and replace it withosem
appropriate one as the needs and desires of thie use
evolve and are refined. The key is to have highkiigd
modules, and if the modules used in the prototyping
process are buggy or unreliable, the users wilpgim
be frustrated by the prototype, and not be able or
motivated to use it to explore the design spacesTh
while patchwork prototyping may seem like an

existing components can have on speeding up the obvious solution for eliciting design requiremerits,

iterative cycle. As a result, each step of the essc
needs to be less thorough as more cycles are pwssib
in the same time, with more opportunities to idignti
and correct errors. This in turn means that the
informality and creativity, indeed playfulness dfet
design processes can mesh with similar approaches f
requirements capture and evaluation, fitting most
appropriately with the aims and ethos of PD.

The extent to which the design component is

was impossible to do before the OSS movement
became both strong and prolific.

6. Conclusion

Web mash-ups and patchwork prototyping are two
methods enabling user-driven design that are now
possible with the technologies and mindsets that
accompany recent trends in software development

present in web mash-ups may be debatable. Most websych as Web 2.0 and OSS. The methods are not

mash-ups of any duration, however, end up going
through several iterations of progressive refinetnaén
the concept. Thus, while the reflection on the giesi
might not be as explicit a part of the procesg &sin

the patchwork prototyping model, it is clearly mes

in the mash-up programmer’'s reflection on the

wholly new. They are firmly rooted in both formal
traditions of software reuse and component based
programming, and informal techniques of tinkering
and experimenting with toy applications and proaffs
concept. What is noteworthy is how they manage to
combine (even mash-up) these traditions to enable

personal use of his or her mash-up, or the comments |arger numbers of people to produce experimental

received from other users.

5.1 Contribution of recent trends

software that is robust enough to be tested inyelagr

situations and hence go through very rapid itenstio

of development and authentic situated evaluation.
With web mash-ups, individuals and small groups

The recent trends encapsulated by the term Web 2.0 are able to create their own technological solustitm
and open participatory movements such as OSS the problems they face in their everyday life, with

provide components allowing user-driven approaches
to be more successful. Web mash-ups are
fundamentally dependent on the vast array of APIs
currently available, and the relative simplicity of

integrating the APIs into working code. They argsoal

dependent on the Web 2.0 service model which
companies such as Amazon and Google have
epitomized. These companies provide the fruit of

the need to be expert programmers. Patchwork
prototyping is a more formal design technique which
allows such user-driven technological innovation to
occur with the support of developers, and on aelarg
scale (i.e., to support communities). In both mdtho
technological innovation is initiated by users, dhd
innovation is driven by user needs and experieases
they incorporate the technologies into their eviay-

considerable development resources vast computing life. From a technological standpoint, the methacks

power and vast amounts of organized content to
innovators, essentially for free, and the creatignd
diversity of ideas of how to combine and recombine
these various services is evident from the numiber o
mash-ups currently being created.

similar in that both take full advantage of the
computational power, encoded experience, and
diversity of options of various already-built

computational tools in an exercise of recombination
and bricolage. The end result is better software

because it is specifically geared to meet the neéds
the users involved in the development process.

7. Acknowledgements

The authors would like to thank the other members
of the design teams we worked with while making the
observations that led to the development of these
ideas, particularly Luigi Marini and Yong Liu.

8. References

[1] Berners-Lee, T., Cailliau, R., Groff, J.F. and
Pollerman, B., “World-Wide Web: The Information
Universe”, Electronic Networking: Research, Applications
and Policy 1(2), 1992, 52-58.

[2] Berners-Lee, T., Hendler, J. and Lassila, O., “The
Semantic Web'Scientific American284(5) 2001. pp 34-43

[3] Blomberg, J.L. and Henderson, A., "Reflections on
Participatory Design: Lessons from the Trillium
Experience,"Proceedings of CHI'90ACM Press, Seattle,
WA, April 1990, pp. 353-360.

[4] Bgdker, S. and Grgnbaek, K., “Cooperative
Prototyping: Users and Designers in Mutual Acti¥jity

International Journal of Man-Machine Studje®t(3), 1991,

453-478.

[5] Bgadker, S., and Iversen, O.S., “Staging Professiona
Participatory Design Practice — Moving PD beyona th
Initial Fascination of User InvolvementRroceedings of
NordiCHI, ACM Press, 2002, pp.11-18.

[6] Boehm, B., "A Spiral Model of Software
Development and EnhancementEEE Computer 21(5)
1988, pp. 61-72.

[71 Dombrowski, A., Marselle, J. and Szot, L., “The
Banner Schedule Route Planner” Technical ReportNISR
UIUCLIS--2006/12+CSCW, 2006.

[8] Feldstein, M. and Masson, P., “Tutorial: Unbolting
the Chairs: Making Learning Management Systems More
Flexible”, eLearn 2006(1), 2006, p. 2.

[9] Floyd, C., “A Systematic Look at Prototypingln
Budde, R., Kuhlenkamp, K., Mathiassen, L., and
Zullighoven, H. (Eds.), Approaches to Prototyping
Springer-Verlag, Berlin, 1984, pp. 1-18.

[10] Gunderson, P.A., “Danger Mouse's Grey Album,
Mash-Ups, and the Age of CompositionPostmodern
Culture & the Johns Hopkins University Pres$5(1),
September 2004.

[11] Heineman, G.T. and Councill, W.T. "Component
Based Software Engineering: Putting the Pieces fhege
Addison-Wesley 2001.

[12] Jones, M.C., Floyd, LR and Twidale, M.B.
"Patchwork Prototyping with Open-Source SoftwareThe
Handbook of Research on Open Source Software:
Technological, Economic, and Social Perspectiv&s,
Amant, K. and Still, B. (Eds), Idea Group, 2007.

[13] Jones, M.C.Rathi, D. and Twidale, M.B., "Wikifying
Your Interface: Facilitating Community-Based Interé
Translation", Proceedings 8iCM Conference on Designing
Interactive System&006. pp. 321-330.

[14] Kaghan, W.N. and Bowker, G.C., “Out of Machine
Age?:. Complexity, Sociotechnical Systems and Actor
Network Theory”,Journal of Engineering and Technology
Management18(3-4), 2001, pp. 253-269.

[15] Kensing, F., and Blomberg, J., “Participatory Desig
Issues and ConcernsComputer Supported Cooperative
Work 7(3-4), 1998, pp. 167-185.

[16] Kling, R., “Learning About Information Technologies
and Social Change: The Contribution of Social Infatics”,
The Information Sociefyl6, 2000, pp. 217-232.

[17] Nardi, B.A. and Miller, J.R., “Twinkling lights and
Nested Loops: Distributed Problem Solving and Sgisbaet
Development”, International Journal of Man-Machine
Studies 34(2), 1991, pp. 161-184.

[18] Nielsen, J.Usability EngineeringMorgan Kaufman,
San Francisco, CA, 1993.

[19] O'Reilly, Tim “What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of SoftWare
2005,www.oreillynet.com/Ipt/a/6228

[20] Rademacher, P., “Are You Ready for Web 2.0?",
BayCHI, www.baychi.org/calendar/2005080%ug. 2005.

[21] Raymond, E.S., The Cathedral & the Bazaar: Musings
on Linux and Open Source by an Accidental Revohaig,
O'Reilly and Associates, Sebastapol, CA, 2001.

[22] Royce, W.W., “Managing the Development of Large
Software SystemsProc. of IEEE Wescqri970, pp. 1-9.

[23] Trist, E.L., “The sociotechnical Perspective; the
Evolution of Sociotechnical Systems as a Conceptual
Framework and as an Action Research Program", in, Ve
A.H. van de, and Joyce, W.Rerspectives on Organization
Design and BehaviolViley, New York, 1981, pp. 19-75.

[24] von Hippel, E., “Innovation by User Communities:
Learning from Open Source Softwar&loan Management
Review 42(4), July, 2001, pp. 82-86.

[25] Weiss, A., “The Power of Collective Intelligence”,
netWorker 9(3), ACM Press, 2005, pp. 16-23.

