
Patchwork Prototyping with Open-Source Software 

M. Cameron Jones * 
University of Illinois at Urbana-Champaign 
Graduate School of Library and Information Science 
501 E. Daniel St. Champaign, IL 61820 
Phone: 217-721-0658 (m) 
Fax: 217-244-3302 
Email: mjones2@uiuc.edu 

Ingbert R. Floyd 
University of Illinois at Urbana-Champaign 
Graduate School of Library and Information Science 
501 E. Daniel St. Champaign, IL 61820 
Phone: 217-721-3171 (m) 
Fax: 217-244-3302 
Email: ifloyd2@uiuc.edu 

Michael B. Twidale 
University of Illinois at Urbana-Champaign 
Graduate School of Library and Information Science 
501 E. Daniel St. Champaign, IL 61820 
Phone: 217-265-0510 (o) 
Fax: 217-244-3302 
Email: twidale@uiuc.edu 



ABSTRACT 
This chapter explores the concept of patchwork prototyping - the combining of open source 
software applications to rapidly create a rudimentary but fully functional prototype that can be 
used and hence evaluated in real life situations. The use of a working prototype enables the 
capture of more realistic and informed requirements than traditional methods that rely on users 
trying to imagine how they might use the envisaged system in their work, and even more 
problematic, how that system in use may change how they work. Experiences with the use of the 
method in the development of two different collaborative applications are described. Patchwork 
prototyping is compared and contrasted with other prototyping methods including paper 
prototyping and the use of commercial off the shelf software. 

INTRODUCTION 

The potential for innovation with open-source software (OSS) is unlimited. Like any entity in the 
world, OSS will inevitably be affected by its context in the world. As it migrates from one 
context to another, it will be appropriated by different users in different ways, possibly in ways 
in which the original stakeholders never expected. Thus, innovation is not only present during 
design and development, but also during use (Thomke & von Hippel, 2002). In this chapter, we 
explore an emerging innovation-through-use: a rapid prototyping-based approach to 
requirements gathering using OSS. We call this approach "patchwork prototyping" because it 
involves patching together open-source applications as a means of creating high-fidelity 
prototypes. Patchwork prototyping combines the speed and low cost of paper prototypes, the 
breadth of horizontal prototypes, and the depth and high-functionality of vertical, high-fidelity 
prototypes. Such a prototype is necessarily crude as it is composed of stand-alone applications 
stitched together with visible seams. However, it is still extremely useful in eliciting 
requirements in ill-defined design contexts, because of the robust and feature-rich nature of the 
component OSS applications.  

One such design context is the development of systems for collaborative interaction, like 
cybercollaboratories. The authors have been involved in several such research projects, 
developing cyberinfrastructure to support various communities, including communities of 
learners, educators, humanists, scientists, and engineers. Designing and developing such systems, 
however, is a significant challenge; as Finholt (2002) noted, collaboratory development must 
overcome the "enormous difficulties of supporting complex group work in virtual settings" (p. 
93). Despite many past attempts to build collaborative environments for scientists (see Finholt, 
2002 for a list of collaboratory projects), little seems to have been learned about their effective 
design, and such environments are notorious for their failure (Grudin, 1988; Star & Ruhleder, 
1996). Thus, the focus of this chapter is on a method of effective design through a form of rapid, 
iterative prototyping and evaluation. 

Patchwork prototyping was developed from our experiences working on cybercollaboratory 
projects. It is an emergent practice we found being independently redeveloped in several 
projects; thus we see it as an effective, ad hoc behavior worthy of study, documentation, and 
formalization. Patchwork prototyping is fundamentally a user-driven process. In all of the cases 
where we saw it emerge, the projects were driven by user groups and communities eager to 



harness computational power to enhance their current activities or enable future activities, and 
the developers of  the prototypes had no pretence of knowing what the users might need a priori. 
As a result, patchwork prototyping’s success hinges on three critical components: 
• Rapid iteration of high-fidelity prototypes; 
• Incorporation of the prototypes by the end-users into their daily work activities; 
• Extensive collection of feedback facilitated by an insider to the user community. 
In this chapter, we focus on how the method worked from the developers’ point of view.  It is 
from this perspective that the advantages of using OSS software are most striking. However, one 
should bear in mind that the method is not just a software development method, but also a 
sociotechnical systems (Trist, 1981) development method: the social structures, workflows, and 
culture of the groups will be co-evolving in concert with the software prototype. 

REQUIREMENTS GATHERING IN COLLABORATIVE 
SOFTWARE DESIGN 

Software engineering methods attempt to make software development resemble other 
engineering and manufacturing processes by making the process more predictable and consistent. 
However, software cannot always be 'engineered', especially web-based applications (Pressman 
et al., 1998). Even when application development follows the practices of software engineering, 
it is possible to produce applications that fail to be used or adopted (Grudin, 1988; Star & 
Ruhleder, 1996). A major source of these problems is undetected failure in the initial step in 
building the system: the requirements gathering phase. This is the most difficult and important 
process in the entire engineering lifecycle (Brooks, 1975/1995, p. 199).  

In designing systems to support collaborative interaction, developers are faced with several 
complex challenges. First, the community of users for which the cyberinfrastructure is being 
developed may not yet exist, and cannot be observed to see how they interact. In fact, there is 
often a technological deterministic expectation that the computational infrastructure being 
created will cause a community to come into existence. Even in the case where there is a 
community to study, many of the activities expected to occur as part of the collaboration are not 
currently being practiced because the tools to support the activities do not yet exist. As a result, 
developers gain little understanding about how the users will be interacting with each other, or 
what they will be accomplishing, aside from some general expectations that are often unrealistic.  

Gathering requirements in such an environment is a highly equivocal task. Where uncertainty is 
characterized by a lack of information which can remedied by researching an answer, collecting 
data, or asking an expert, equivocal tasks are those in which "an information stimulus may have 
several interpretations. New data may be confusing, and may even increase uncertainty." (Daft & 
Lengel, 1986, p. 554). Requirements gathering is one such situation, where the developers cannot 
articulate what information is missing, let alone how to set about obtaining it. The only 
resolution in equivocal situations is for the developers to "... enact a solution. [Developers] 
reduce equivocality by defining or creating an answer rather than by learning the answer from 
the collection of additional data." (Daft & Lengel, p. 554). As Daft & Macintosh (1981) 
demonstrate, tasks with high equivocality are unanalyzable (or rather, have low analyzability: 
Lim & Benbasat, 2000), which means that people involved in the task have difficulty 
determining such things as alternative courses of action, costs, benefits, and outcomes.  



RAPID PROTOTYPING 

Rapid prototyping is a method for requirements gathering which has been designed both to 
improve communication between developers and users, and to help developers figure out the 
usefulness or consequences of particular designs before having built the entire system. The goal 
of rapid prototyping is to create a series of iterative mockups to explore the design space, 
facilitate creativity, and to get feedback regarding the value of design ideas before spending 
significant time and money implementing a fully functional system (Nielsen, 1993). There are 
several dimensions to prototypes. One dimension is the range from low-fidelity to high-fidelity 
prototypes (see table 1; Rudd, Stern, & Isensee, 1996). Low-fidelity prototypes have the 
advantages of being fast and cheap to develop and iterate. However, they are only able to garner 
a narrow range of insights. Perhaps the most popular low-fidelity prototyping technique is paper 
prototyping (Rettig, 1994). Paper prototypes are very fast and very cheap to produce. They can 
also generate a lot of information about how a system should be designed, what features would 
be helpful, and how those features should be presented to the users. However, paper prototypes 
do not allow developers to observe any real-world uses of the system, or understand complex 
interactions between various components and between the user and the system. Also, they do not 
help developers understand the details of the code needed to realize the system being prototyped.  

Table 1 Advantages and disadvantages of low and high-fidelity prototyping 
(Rudd, Stern, & Isensee, 1996, p. 80) 

 Advantages Disadvantages 

Lo
w

-F
id

el
ity

 P
ro

to
ty

pe
s 

• Lower development cost  
• Can create many alternatives 

quickly 
• Evaluate multiple design 

concepts  
• Useful communication device  
• Address screen layout issues  
• Useful for identifying market 

requirements  
• Proof-of-concept  

• Limited error checking  
• Poor detailed specification to 

code to  
• Facilitator-driven  
• Limited utility after 

requirements established  
• Limited usefulness for 

usability tests  
• Navigational and flow 

limitations  
• Weak at uncovering 

functionality and integration 
related issues 

H
ig

h-
Fi

de
lit

y 
Pr

ot
ot

yp
es

 

• Complete functionality  
• Fully interactive  
• User-driven  
• Clearly defines navigational 

scheme  
• Use for exploration and test  
• Look and feel of final product  
• Serves as a living specification  
• Marketing and sales tool  

• More expensive to develop  
• Time-consuming to create  
• Inefficient for proof-of-

concept designs  
• Not effective for requirements 

gathering  

High-fidelity prototypes, on the other hand, can simulate real functionality. They are usually 
computer programs themselves which are developed in rapid development environments (Visual 
Basic, Smalltalk, etc.) or with prototyping toolkits (CASE, I-CASE, etc). In either case, these 



prototypes, while allowing programmers to observe more complex interactions with users and to 
gain understandings about the underlying implementation of the system, are comparatively slow 
and expensive to produce and iterate (Rudd et al., 1996). These costs can be offset somewhat by 
incorporating these prototypes into the development of the final system itself as advocated by 
RAD (rapid application development) (Martin, 1991). However, critics of RAD methods are 
quick to point out the limited scalability of software built using source code from prototypes 
(Beynon-Davies, Carne, Mackay, & Tudhope, 1999). Typically low-fidelity and high-fidelity 
prototypes are used in succession, with developers increasing the fidelity of the prototypes as 
they develop the specifications. Due to their high cost, high-fidelity prototypes may only be built 
for a select number of designs generated by low-fidelity prototyping, which precludes the 
generation of a series of disposable high-fidelity proofs of concepts to test out alternative design 
ideas.  

Another dimension to be considered in the prototyping discussion is scope. Software can be 
viewed as consisting of a number of layers, from the user interface, to the base layer which 
interacts with the underlying operating system or platform. Horizontal prototypes encompass a 
wide scope, spanning the breadth of a system but only within a particular layer (usually the user-
interface). Users can get a sense of the range of the system's available functions; however, the 
functionality is extremely limited. This can help both the user and the programmer understand 
the breadth of the system, without plumbing its depths. Vertical prototypes on the other hand, 
take a narrow slice of the system's functionality and explore it in depth through all layers. This 
allows users to interact with a particular piece of the system, and gives the programmer a 
detailed understanding of the subtle issues involved in its implementation (Floyd, 1984; Nielsen, 
1993).  

 

Figure 1 Horizontal and vertical prototypes (Nielsen, 1993, p. 94) 

The high equivocality present when designing collaborative systems makes it difficult to apply 
rapid prototyping techniques effectively. Because users may not be able to articulate what they 
want or need, it helps to be able to collaboratively interact with high-fidelity systems in order to 



test them in real world situations and see what requirements emerge. Without such an experience, 
it is unlikely that any feedback the developers get from the users, either through direct 
communication or observation will be useful. Thus, low-fidelity prototypes are limited in their 
power to elicit requirements as the users have difficulty imagining how the system the prototypes 
represent will work, what it could do for them, or how they might use it. Also, since the majority 
of tasks involved in collaboration are quite complex, and require multiple kinds of functionality 
to complete, the users need to be able to interact with the system as a whole, and with 
considerable depth of implementation, thus requiring a prototype that is both horizontal and 
vertical.  

The economics of developing high-fidelity prototypes which are both horizontal and vertical in 
scope, however, are problematic. Even if the developers were to build a series of high-fidelity, 
vertical prototypes, they would end up having built the equivalent of an entire system from 
scratch just to have a functionally sufficient prototype. Not only would it be expensive and time-
consuming, but the functionality and robustness would be minimal at best. Also, it is likely that 
the work would need to be discarded and replaced with something new, since it is unlikely that 
the design would be correct on the first, second, or even third try. Thus, the typical methods of 
prototyping are not sufficient, either because developing all the code would be too expensive, or 
the prototypes which are developed do not have high enough fidelity.  

The proliferation of production-scale OSS systems has created a vast field of growing, reliable, 
usable, and feature-rich programs, a large number of which support aspects of web-based 
collaboration. These programs can be easily stitched together because the code is open and 
modifiable. Furthermore, they can be treated as disposable since one application can easily be 
discarded and replaced with another. This presents an opportunity for developers to rapidly build 
and evaluate a high-fidelity prototype of a collaborative environment comprising a patchwork of 
multiple open-source applications. Such a prototype spans the breadth of a horizontal prototype 
and the depth of a vertical prototype within a single system.  

ORIGINS AND EXAMPLES OF PATCHWORK PROTOTYPING 

Patchwork prototyping is a rapid prototyping approach to requirements gathering which was 
emergent from practice rather than designed a priori. We have been involved with several 
groups which were developing cyberinfrastructure to support collaboration, and in each group 
we observed ad hoc prototyping and development strategies which were remarkably similar and 
which developed entirely independent of each other. Upon making these observations, we 
realized that there was a core process at work in each of these projects which could be abstracted 
out and described as a general approach to requirements gathering for developing 
cyberinfrastructure. Because patchwork prototyping evolved from practice, however, we believe 
that it will be much easier to understand our formal description of the approach after we describe 
some of the relevant details of our experiences. In this section we describe two projects with 
which we were involved, and the relevant dynamics of each project; in the following section we 
describe the patchwork prototyping approach more abstractly.  

 



Project Alpha: Building a Cybercollaboratory for Environmental Engineers 

Project Alpha (a pseudonym used to preserve anonymity) was devoted to building a 
cybercollaboratory for environmental engineers. At the beginning, the project was intended to be 
a requirements gathering project, and the goal was to build a functional prototype of the 
cyberinfrastructure which would be presented to the granting agency as part of a larger proposal. 
The effort was a success and now, more than a year after the project began, the prototype is 
being converted into a production-scale system. The cybercollaboratory prototypes were largely 
designed and built over a period of six months by a team of two developers, with significant 
contribution to the design by a team of around twelve to thirteen other researchers (these 
researchers, plus the two developers, we call the design team), and some minor programming 
contributions by undergraduates employed by the project. By the end of the prototyping phase, 
there was a community of users, which included 60-70 active users out of approximately 200 
registered users, ten of which comprised a core group of vocal users who provided significant 
feedback on the design 

The project Alpha prototype was constructed on the Liferay portal server framework. In addition 
to using existing portlets, the developers also wrapped other OSS applications in portlet 
interfaces, enabling their rapid integration into the prototype. A number of different OSS 
applications were used, including: the Heritrix web crawler, the Lucene search engine, and the 
MediaWiki wiki system. Other applications were similarly integrated, but were not necessarily 
publicly available OSS. Some were in-house applications developed by other projects, for which 
the developers had source code. These applications were used to prototype data-mining and 
knowledge management functionality in the cybercollaboratory. 

The general process by which these tools were incorporated was very ad hoc. The development 
team might decide on prototyping a particular function, or the programmers might get some idea 
for a 'cool feature' and would set about integrating the feature into the system. This approach had 
several unexpected benefits. First, minimal time was spent building portlets, so that when a 
version of the prototype was presented to the design team, minimal effort was lost when 
particular features or portlets were rejected as being unsuitable. Second, it allowed the design 
team to choose between several different portlets which had essentially the same function but 
different interfaces (i.e., were optimized for different types of use). Third, it allowed the 
developers to easily switch features off when the interface for a portlet was too complex, or turn 
them back on if they were requested by either the design team or the active users. Fourth, the 
development community and the associated forums, mailing-lists and websites, surrounding the 
OSS applications which were integrated into the prototype served as excellent technical support 
(Lakhani & von Hippel, 2002). 

The fact that the prototype was fully functional was critical to its success in eliciting 
requirements. By using the prototypes over a period of six months, the users were able to 
incorporate them into their day-to-day work practices. This allowed them to evaluate the utility 
of the tool in various contexts of actual use. Without functionality, the developers feel that it 
would have been impossible to effectively gather requirements. However, it was also vital that 
the users communicate their experiences to the developers, both formally and informally. To this 
end, the developers conducted several surveys of the users, asking them about the prototype and 



features they found useful. The developers also used the prototype itself to solicit feedback. On 
the front page of the prototype was a poll asking users to vote for the features they liked the most. 
Additionally, on every page of the prototype was a feedback form that allowed users to send 
quick notes about the system as they experienced it. The users also communicated with the 
developers via informal means such as email and face-to-face meetings. However, the most 
important method of obtaining feedback was that one of the PIs in the project acted as an 
intermediary, actively soliciting feedback from users as an insider to the community of 
environmental engineers. The PI's position allowed them to receive more feedback of higher 
quality and honesty than the developers would have been able to collect on their own.  

To illustrate the process in more detail, we describe how one particular piece of OSS was 
integrated with the cybercollaboratory. The developers wanted to allow users to be able to 
collaboratively edit documents in the system. The Liferay suite had a wiki system available 
which the programmers enabled; however, users found that tool to be too difficult to use, partly 
because of the unintuitive markup syntax of the particular wiki used, and partly because they had 
no tasks which clearly lent themselves to the use of such a tool. Later during the prototyping 
phase, some members of the design team wanted to demonstrate the usefulness of scenarios and 
personas in facilitating requirements gathering, and from prior experience suggested the use of a 
wiki. In response to this request and the prior difficulties in using the bundled tool, the 
developers installed MediaWiki on the server, and added a link from the cybercollaboratory's 
menu next to the existing wiki tool pointing to the MediaWiki installation. No time was spent 
trying to integrate the Liferay and MediaWiki systems; each application had separate interfaces 
and user accounts.  

One benefit of using the MediaWiki system was that it allows people to use the system without 
logging in, thereby mitigating the need to integrate authentication mechanisms. Users found the 
MediaWiki system easier to learn and use, and began using it exclusively over the in-built 
Liferay wiki. The developers then decided to embed the MediaWiki interface in the rest of the 
cybercollaboratory and wrote a simple portlet that generates an HTML IFRAME to wrap the 
MediaWiki interface. Each step of integrating the MediaWiki installation took only minimal 
effort on the part of the developers (sometimes literally only a matter of minutes) and generated 
insights about the role and design of a collaborative editing tool in the cybercollaboratory. 
Among the design insights gained by the developers are that the tool should be easy to use with a 
simple syntax for editing. Also, the tool should support alternate views of the data; offering a 
unified view of all documents either uploaded to the site's document repository or created and 
edited on the wiki. The users were able to see how this tool could benefit their jobs and that 
shaped the requirements of the tool. As a result of this process, the project is currently 
implementing a new collaborative editing component. This component will have features like 
integrated authentication; group- and project-based access control; integration with other features 
(e.g., project views, and wiki-linking). Additionally, the new collaborative writing component 
will deprecate redundant and confusing features like in-wiki file uploads.  

Project Beta: Building Collaborative Tools to Support Inquiry-Based Learning 

Project Beta is an ongoing research project aimed at designing and building web-based tools to 
support processes of inquiry as described by John Dewey (Bishop et al., 2004). Initiated in 1997, 



the project has embraced a long-term perspective on the design process and produced a series of 
prototypes which support inquiry-based teaching and learning. In 2003 the project began 
exploring the development of tools to support collaborative inquiry within groups and 
communities. The current prototype is the third major revision of the collaborative 
cyberinfrastructure, with countless minor revisions on-going. Throughout the project's lifespan 
several generations of programmers have joined and left the development team. For a thirty 
month stretch the majority of programming was sustained by a single graduate student 
programmer. Between four and eight other researchers filled out the design team.  

The prototypes are available for anyone to use, and the source code is also distributed under a 
Creative Commons license. To date, the prototypes have been used to support a large number of 
communities of users ranging from water quality engineers, to volunteers in a Puerto Rican 
community library in Chicago, from researchers studying the honeybee genome, to 
undergraduates in the social sciences. There are numerous other groups using the system for any 
number of purposes. Given this scenario, it is practically impossible to design for the user 
community or any intended use.  

The prototypes were developed in the PHP programming language on an open-source platform 
consisting of Apache, MySQL, and RedHat Linux. In contrast to Project Alpha where the 
developers initially did very little programming and primarily used readily available tools, the 
developers of Project Beta spent considerable effort building an infrastructure from scratch, in 
part because the developers were initially unaware of relevant OSS. However, as the project 
progressed several open-source tools were incorporated into the prototypes including the 
JavaScript-based rich-text editors FCKEditor and TinyMCE, phpBB bulletin board system, and 
MediaWiki.  

To demonstrate the process in more detail, we describe how one particular piece of OSS was 
integrated with the prototypes. In the earliest version of the cyberinfrastructure, users expressed 
an interest in having a bulletin board system. The developers selected the phpBB system and 
manually installed copies of phpBB for each community that wanted a bulletin board; the 
bulletin board was simply hyperlinked from the community's homepage. In the next iteration of 
the prototype, the phpBB system was modified to be more integrated with the rest of the 
prototype. Users could now install a bulletin board themselves, without involving the developers, 
by clicking a button on the interface. Furthermore, the authentication and account management 
of the bulletin board was integrated with the rest of the prototype, eliminating the need for users 
to log in twice. However, the full features of phpBB were more than the users needed. They 
primarily made use of the basic post/reply functions and the threaded conversation structure. 
Users indicated that the overall organization of the board system into topics, threads, and posts 
made sense to them. In the most recent major revision of the prototype, the phpBB system was 
replaced by a simpler, more integrated home-made bulletin board prototype which supported 
these basic features. Had the development progressed in the opposite order (i.e., building the 
simple prototype first, then adding features) it is possible that developers could have wasted 
valuable time and energy prototyping features which would only be discarded later for lack of 
use.  



GENERALIZED APPROACH TO PATCHWORK 
PROTOTYPING 

Based on the experiences described above, we have outlined a general approach to building 
patchwork prototypes using OSS. While our experience has been primarily with web-based tools, 
and this process has been defined with such tools in mind, it is likely that a similar approach 
could be taken with prototyping any kind of software. Like other prototyping methods, this is 
designed to be iterated, with the knowledge and experience gained from one step feeding into the 
next. The approach entails the following five stages:  

1. Make an educated guess about what the target system might look like;  
2. Select tools which support some aspect of the desired functionality;  
3. Integrate the tools into a rough composite;  
4. Deploy the prototype and solicit feedback from users;  
5. Reflect on the experience of building the prototype and the feedback given by users, and 

repeat. 

For the most part, these steps are relatively straight-forward. Making the first educated guess 
about what the target system might look like can be the hardest step in this process, because it 
requires the design team to synthesize their collective knowledge and understanding of the 
problem into a coherent design. In this first iteration of the process, it is often helpful to use 
paper prototypes and scenarios, but their function is primarily to serve as communications 
devices and brainstorming aids. The high equivocality of the situation almost guarantees, 
however, that whatever design they produce will be insufficient. This is not a failure. It is an 
expected part of the process, and the design will be improved on subsequent iterations. The 
important thing is to have a starting point which can be made concrete, and not to spend too 
much time brainstorm ideas.  It is essential not to become bogged down in controversies about 
how the software “ought” to look, but rather to put together a prototype and test it out with users 
in their everyday environments and let the users figure out what works, what does not, and what 
is missing. 

Selection and Integration of Tools: The Benefits of Using Open-Source Software 

There are several important considerations to keep in mind when selecting the tools. On first 
glance, patchwork prototyping as a method does not require OSS; the same general process 
could theoretically be followed by using software that provides APIs, or by creating prototypes 
through adapting methodologies for creating production scale software systems such as COTS 
(Commercial Off-The-Shelf) integration (Boehm & Abts, 1999).  However, using OSS confers 
several important advantages; in fact, we believe that patchwork prototyping is only now 
emerging as a design practice because of the recent availability of a significant number of mature, 
production-scale OSS systems. 

Without access to source code, developers are limited in how well they can patch together 
different modules, the features they can enable or disable, their ability to visually integrate the 
module with the rest of the system, and their ability to understand the underlying complexity of 
the code needed to construct such systems on a production-scale. High-profile OSS is often of 



high quality, which means that difficult design decisions have already been made. Given that it is 
built from the collective experiences of many programmers, less effective designs have already 
been tried and discarded. In fact, by using and delving into the human-readable (compared to that 
generated by CASE tools, for example), open-source code, the developers can get a grounded 
understanding of how particular features can be implemented, which can enable them to better 
estimate development time and costs. 

The web-based nature of patchwork prototypes affords several ways of integrating the selected 
software into the prototype, ranging from shallow to deep. Shallow integration consists of either 
wrapping the tools in an HTML frame to provide a consistent navigation menu between the tools, 
or customizing the HTML interfaces of the tools themselves to add hyperlinks. Most open-source 
web applications use HTML templates, cascading style sheets, and other interface customization 
features, which make adding or removing hyperlinks and changing the look-and-feel very easy. 
The advantage of shallow integration is the ease and speed with which the developer is able to 
cobble together a prototype. A significant drawback to shallow integration is that each 
application remains independent.  

Deeper integration usually requires writing some code, or modifying existing source code. This 
may include using components or modules written for the extension mechanisms designed into 
the application or other modifications made to the application's source code. If the developers 
cannot find precisely what they are looking for, they can fashion the code they need by copying 
and modifying similar extension code; or, in the worst case, the developers will need to write 
new code to facilitate the integration. However, the amount of code needed is very little in 
comparison to the amount of code that would have been required of the developers building a 
prototype from scratch.  

For any prototyping effort to be worthwhile, the costs of creating the prototypes must be minimal. 
OSS systems tend to be fully implemented, stand-alone applications with many features and 
capabilities which provide a wealth of options to play with when prototyping to elicit 
requirements. The minimal effort required to add features allows the programmers to treat the 
features as disposable, because little effort was needed to implement them, so little effort is 
wasted when they are switched off or discarded. That most OSS is free is also important, both for 
budgetary reasons and because the developers can avoid complicated licensing negotiations. 
Additionally, most OSS has a very active development community behind it with members who 
are often eager to answer the developer's questions in considerable depth, and do so for free, 
unlike the expensive technical support which is available for commercial products. All of this 
facilitates the requirements gathering process, because iterations of the prototype can be rapidly 
created, with high functionality, at minimal cost and with minimal effort and emotional 
investment by the developers.  

Deployment, Reflection, and Iteration 

During the deployment of the prototype, future users integrate the cyberinfrastructure into their 
work practices for an extended period of time and explore what they can do with it 
collaboratively. The collection of feedback on user experiences allows requirements gathering 
which is not purely need-based, but also opportunity- and creativity-based. By seeing a high-



fidelity prototype of the entire system, users can develop new ideas of how to utilize features 
which go beyond their intended use, and conceptualize new ways of accomplishing their work. 
In addition, users will become aware of gaps in functionality which need to be filled, and can 
explain them in a manner that is more concrete and accessible to the developers.  

When reflecting on the collected feedback, however, the design team must realize that the 
prototype does not simply elicit technical requirements; it elicits requirements for the 
collaborative sociotechnical system as a whole. The existence of the prototype creates a 
technological infrastructure which influences the negotiation of the social practices being 
developed by the users via the activities the infrastructure affords and constrains (Kling, 2000). 
The design team must be aware of how various features affect the development of social practice, 
and must make explicit the type of interactions which are required but are not currently realized. 
By allowing the users to interact with the prototypes for extended periods, collecting feedback on 
their experiences, and paying attention to the social consequences of the cyberinfrastructure, a 
richer understanding of the sociotechnical system as a whole can emerge. Thus, reflection is a 
process of attending to the consequences of the design for the broader sociotechnical system, and 
integrating those consequences into a holistic understanding of how the system is evolving.  

Iteration is essential to the rapid prototyping approach. First, iteration allows for the exploration 
of more features and alternatives. This can uncover overlooked aspects of the system which 
might be of use. This can also reinforce the importance or necessity of particular features or 
requirements. Furthermore, iteration provides the users with a constant flow of new design 
possibilities which prevents them from becoming overly attached to any single design giving 
them the freedom to criticize particular instances of the prototype. Ultimately, it is impossible to 
reach complete understanding of the system given its evolving nature. However, by iterating the 
prototyping process, the design space may narrow, identifying a set of key requirements. At this 
point the design is not complete, but work on a flexible production-scale system can begin, and 
further exploration of the design space can be continued within that system. 

Table 2. Comparison of patchwork prototyping with other methods. 

Paper Prototyping Patchwork 
Prototyping 

COTS/API 
Prototyping 

Speed 
Can iterate a prototype 
multiple times in an 
afternoon 

Can iterate a prototype 
in less than a week 

Can take weeks or 
months to iterate a 
prototype 

Monetary Costs 
Cost of office supplies Free, or minimal cost of 

licenses if in business 
setting 

Purchasing and 
licensing software can 
be expensive 

Availability of Materials 
Usually already lying 
around 

Large number of high 
quality OSS available 
for free download 

Not all commercial 
systems have APIs 

Functionality 
Non-functional High High 

Accessibility 



Anyone can prototype 
systems using paper, 
including non-technical 
end-users 

Requires skilled 
programmers to create 
patchwork prototypes 

Requires skilled 
programmers to 
integrate commercial 
software 

Interface 
Not polished, but can 
provide a consistent, 
and/or innovative 
interface concept for 
consideration 

Not renowned for 
excellent usability. 
Assembled components 
may be inconsistent 

Individual elements 
may be high quality and 
familiar. Assembled 
components may be 
inconsistent 

Flexibility 
High – can do anything 
with paper 

High – can modify 
source to create any 
desired functionality 

Low – are restricted to 
what the API allows, 
which may be limited 

Disposability 
High – little investment 
of time, money, 
emotions 

High – little investment 
of time, money, 
emotions 

Low – significant effort 
and money can result in 
high emotional 
investment 

User Attachment 
Low – users can see it 
is rough and non-
functional 

Med to High – upon 
using it, can get 
attached to the system, 
unless iterated rapidly 

High – cannot be 
iterated fast enough to 
avoid attachment 

STRENGTHS & LIMITATIONS 

Patchwork prototyping addresses two major problems that designers face when building new 
sociotechnical systems. First, it allows the design team to get feedback on the prototype's use in 
real-world situations. Users interact with the system in their daily activities which focuses their 
feedback around task-related problems. In Project Alpha, when members of the design team 
started using the prototype, the feedback changed from general praise or criticism of the 
appearance of the interface, to more detailed explanations of how particular functionality aided 
or inhibited task performance. Second, it reduces the equivocality of the design space. By 
creating a functional prototype, discussions change from being highly suppositional, to being 
about concrete actions, or concrete functionality.  

Integration into the real-world context is markedly different from other prototyping and 
requirements capture methods. Paper prototypes are typically given to users in a laboratory 
setting (Nielsen, 1993), thus all the tasks are artificial. While this can give developers important 
design insights, the drawback is that prototypes can end up optimized for artificial tasks, and not 
for real-world use. More expensive methods such as participatory design (Ehn & Kyng, 1991) 
and ethnography (Crabtree, Nichols, O’Brien, Rouncefield, & Twidale, 2000) try to incorporate 
real-world use into the design process; the former by bringing users into the design team, the 
latter by observing users in their natural work environment. However, when the technology that 
these methods were used to design is introduced, it inevitably changes the practices and social 
structures present in the work environment, often in a way that cannot be predicted. Patchwork 
prototyping overcomes these limitations by being cheap and by providing real-time feedback on 
both users' problems with the software, and the effects the software is having on the broader 
work context.  



The advantages of patchwork prototyping can be seen when comparing it to other prototyping 
techniques.  In Table 2 we compare it to paper prototyping and to prototyping using commercial 
off the shelf (COTS) software.  The advantages of patchwork prototyping are that it has many of 
the benefits of paper prototyping, including low cost and ready availability of materials, yet 
provides the high functionality of COTS/API prototyping, and the effort needed to create the 
prototypes and the length of the iteration cycles lies somewhere in between. Thus, while we see 
the method as being yet another tool for developers and designers to have in their tool-box, in 
many ways, it combines the best of both worlds.   

The patchwork prototyping approach is not without limitations, however. Despite our hope that 
the visibility of the seams between the applications would be interpreted by the users as an 
indication that the prototype is a work-in-progress, our experiences seem to indicate that the 
users still view it as a finished product due to the fact that it has real functionality. It is possible 
that such interpretations can be overcome through social means, by emphasizing the fact that the 
system is a prototype to all users who are encouraged to test it. However, since none of the 
projects we participated in did this, we have no idea whether or not that would be sufficient. One 
thing that is clear, however, is that visual coherence between applications greatly facilitates the 
ease of use, and positive perceptions of the system as a whole. In fact, in project Alpha it was 
realized that users need different views of the component modules and features depending on the 
context in which they access the applications, and in some of those views the distinctions 
between modules must be totally erased.  

Patchwork prototyping requires highly skilled programmers to be implemented effectively. 
Programmers must have significant experience within the development environment in which the 
OSS applications are coded; otherwise, they will spend too much time reading code and learning 
the environment, and the speed of implementation will not be as fast. Also, OSS can have 
security vulnerabilities which can compromise the server on which they are hosted. Project Beta 
ran into this problem when multiple installations of phpBB succumbed to an internet worm, 
bringing down the prototype for several days. Third, patchwork prototyping requires a long-term 
commitment by users, and a motivated facilitator who is able to convince the users to adopt the 
prototype and incorporate it into their work practices. The facilitator must collect feedback about 
the users' experiences. Without willing users and the collection of feedback, the prototyping 
process will likely fail.  

FUTURE TRENDS 

The use of patchwork prototyping is still in its infancy. The relative ease with which patchwork 
prototypes can be constructed means that the method itself affords appropriation into new 
contexts of use. For example, one of the biggest costs to organizations is buying software 
systems such as enterprise management systems. Patchwork prototyping offers a cheap and 
effective method for exploring a design space and evaluating features. Consequently, through 
prototyping managers can be more informed when shopping for software vendors, and can more 
effectively evaluate how effective a particular vendor's solution will be for their company 
(Boehm & Abts, 1999).  



Because users have to integrate the prototype into their daily work practices, transitioning from 
the patchwork prototype to the production-scale system can be highly disruptive. One method of 
avoiding this is having a gradual transition from the prototype to the production-scale system by 
replacing prototype modules with production-scale modules. To do this, however, the prototypes 
must be built on a robust, extensible, modular framework because the latter component is not 
easily replaced. If this model is used, the system development process need never end. 
Prototypes of new features can constantly be introduced as new modules, and, as they mature, be 
transitioned into production-scale systems. As more developers and organizations support open-
source development, the number and availability of OSS applications will increase. As more 
modules are written for particular open-source, component-based systems, the costs of doing 
patchwork prototyping will further decrease, as will the threshold for programming ability—
perhaps to the point where users could prototype systems for themselves which embody 
specifications for software programmers to implement.  

CONCLUSIONS 

Patchwork prototyping is a rapid prototyping approach to requirements gathering which shares 
the advantages of speed and low cost with paper prototypes, breadth of scope with horizontal 
prototypes, and depth and high-functionality with vertical, high-fidelity prototypes. This makes it 
particularly useful for requirements gathering in highly equivocal situations such as designing 
cyberinfrastructure where there is no existing practice to support, because it allows future users 
to integrate the cyberinfrastructure into their work practices for an extended period of time and 
explore what they can do with it collaboratively. It has the benefit of allowing the design team to 
monitor the sociotechnical effects of the prototype as it is happening, and gives users the ability 
to provide detailed, concrete, task-relevant feedback.  

Patchwork prototyping is an excellent example of how OSS software can foster innovation. The 
affordances of open source code and a devoted development team create opportunities to utilize 
OSS in ways that go beyond the functionality of any particular application’s design. The cases 
presented here merely scratch the surface of a new paradigm of OSS use. Further research is 
needed to understand the specific features of technologies which afford such innovative 
integration. 

REFERENCES 

Beynon-Davies P., Carne C., Mackay H., & Tudhope D. (1999). Rapid application development 
(RAD): an empirical review. European Journal of Information Systems, 8(3), 211-223.  

Bishop, A. P., Bruce, B. C., Lunsford, K. J., Jones, M. C., Nazarova, M., Linderman, D., Won, 
M., Heidorn, P. B., Ramprakash, R., & Brock, A. (2004). Supporting community inquiry with 
digital resources. Journal of Digital Information, 5(3), Article No. 308.  

Boehm, B. W., & Abts, C. (1999). COTS Integration: Plug and Pray? IEEE Computer, 32(1), 
135-138. 



Brooks, F. P. (1975/1995). The Mythical Man-Mouth: Essays on Software Engineering, 
Anniversary Edition. Boston, MA: Addison-Wesley.  

Crabtree, A., Nichols, D. M., O'Brien, J., Rouncefield, M., & Twidale, M. B. (2000). 
Ethnomethodologically-informed ethnography and information systems design. JASIS, 51(7), 
666-682.  

Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness 
and structural design. Management Science, 32(5), 554-571.  

Daft, R. L., & Macintosh, N. B. (1981). A Tentative Exploration into the Amount and 
Equivocality of Information Processing in Organizational Work Units. Administrative Sciences 
Quarterly, 26(2), 207-224.  

Ehn, P., & Kyng, M. (1991). Cardboard Computers: Mocking-it-up or Hands-on the Future. In J. 
Greenbaum, & M. Kyng (Eds.), Design at Work (pp. 169-196). Hillsdale, NJ: Laurence Erlbaum 
Associates.  

Finholt, T. A. (2002). Collaboratories. Annual Review of Information Science and Technology. 
36(1), 73-107.  

Floyd, C. (1984). A Systematic Look at Prototyping. In R. Budde, K. Kuhlenkamp, L. 
Mathiassen, & H. Zullighoven (Eds.), Approaches to Prototyping (pp. 1-18). Berlin: Springer-
Verlag.  

Grudin, J. (1988). Why CSCW Applications Fail: Problems in the Design and Evaluation of 
Organizational Interfaces. CSCW 88: Proceedings of the Conference on Computer-Supported 
Cooperative Work (pp. 85-93). Portland, OR: ACM.  

Kling, R. (2000). Learning About Information Technologies and Social Change: The 
Contribution of Social Informatics. The Information Society, 16, 217-232.  

Lakhani, K. R., & von Hippel, E. (2002). How open source software works: “free” user-to-user 
assistance. Research Policy, 1451, 1–21. 

Lim, K. H., & Benbasat, I. (2000). The Effect of Multimedia on Perceived Equivocality and 
Perceived Usefulness of Information Systems. MIS Quarterly, 24(3), 449-471.  

Martin, J. (1991). Rapid Application Development. New York, NY: Macmillan Publishing Co.  

Nielsen, J. (1993). Usability Engineering. San Diego, CA: Morgan Kaufman.  

Pressman, R. S., Lewis, T., Adida, B., Ullman, E., DeMarco, T., Gilb, T., Gorda, B., Humphrey, 
W., & Johnson, R. (1998). Can Internet-Based Applications Be Engineered? IEEE Software, 
15(5), 104-110. 



Rettig, M. (1994). Prototyping for tiny fingers. Communications of the ACM, 37(4), 21-27.  

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs. high-fidelity prototyping debate. Interactions 
3(1), 76-85.  

Star, S. L., & Ruhleder, K. (1996). Steps Toward an Ecology of Infrastructure: Design and 
Access for Large Information Spaces. Information Systems Research, 7(1), 111-134.  

Thomke, S., & von Hippel, E. (2002) Customers as Innovators: New Ways to Create Value. 
Harvard Business Review, 80(4), 74-81. 

Trist, E.L. (1981). The sociotechnical Perspective: the Evolution of Sociotechnical Systems as a 
Conceptual Framework and as an Action Research Program. In A. H. van de Ven, & W. F. Joyce 
(Eds.) Perspectives on Organization Design and Behavior (pp. 19-75). New York, NY: John 
Wiley & Sons. 

GLOSSARY OF TERMS 
Sociotechnical system – refers to the concept that one cannot understand how a technology will 
be used in a particular environment without understanding the social aspects of the environment, 
and that one cannot understand the social aspects of the environment without understanding how 
the technology being used shapes and constrains social interaction.  Thus, one can only 
understand what is going on in an environment by looking at it through a holistic lens of analysis. 
 
Rapid Prototyping – Rapid prototyping is a method which involves creating a series of 
prototypes in rapid, iterative cycles.  Normally, a prototype is created quickly, presented to users 
in order to obtain feedback on the design, and then a new prototype is created which incorporates 
that feedback.  This cycle is continued until a fairly stable, satisfactory design emerges, which 
informs the design of a production-scale system. 
 
Paper Prototyping – a rapid prototyping method for creating low-fidelity prototypes using 
pencils, paper, sticky notes, and other “low-tech” materials which can be quickly iterated in 
order to explore a design space.  Often used in interface design. 
 
Patchwork prototyping – a rapid prototyping method for creating high-fidelity prototypes out of 
open-source software which can be integrated by users into their every-day activities.  This gives 
users something concrete to play with and facilitates a collaborative process of sociotechnical 
systems development.  It is ideal for highly equivocal design situations. 
 
COTS Integration – the process by which most businesses integrate commercial off the shelf 
(COTS) software systems in order to create a computing environment to support their business 
activities. 
 
Uncertainty – the name for a lack of knowledge which can be addressed by obtaining more 
information, such as by researching an answer, looking it up in reference materials, or by 
collecting data. 



 
Equivocality – the name for a lack of knowledge which cannot be mitigated simply by doing 
research or gathering more information.  In an equivocal situation, decisions often need to be 
made, definitions created, and procedures negotiated by various (often competing) stake-holders. 
 


