
Infrastructures From the Bottom-Up and the Top-Down:
Can They Meet in the Middle?

Michael B. Twidale

Graduate School of Library and Information

Science

University of Illinois at Urbana-Champaign

501 E. Daniel St. Champaign, IL 61820 USA

twidale@uiuc.edu

Ingbert Floyd

Graduate School of Library and Information

Science

University of Illinois at Urbana-Champaign

501 E. Daniel St. Champaign, IL 61820 USA

ifloyd2@gmail.com

ABSTRACT

Based on a study of participatory design in the

development of cyberinfrastructure involving the rapid

composition of open source software and web services, we

consider cases where researchers create their own ad hoc

infrastructures out of available software. We compare „top-

down‟ and „bottom-up‟ cyberinfrastructure development

and speculate on whether the two approaches can be

productively combined.

Keywords

Open Source Software, Cyberinfrastructure, Research

Collaboratories, End-User Computing, Appropriation.

INTRODUCTION

Participatory design (PD) originally focused on novel

workplace information system development, typically a

top-down managerial initiative. This focus was natural

given that when PD first emerged as a method, most

contexts of interest were attempts at initial computerization

of a particular work setting. Hence design typically

involved building applications from scratch and integrating

them into existing sociotechnical systems.

Current workplace information ecologies in most

developed countries no longer resemble those early

environments. Not only has computing technology become

widespread, but certain applications such as word

processors, spreadsheets, and web browsers have become

practically ubiquitous in many workplaces. Recent trends

in application development such as the free/libre open-

source software (FLOSS) movement and the proliferation

of web applications and web APIs continue to alter these

ecologies, and change the expectations of people within

them. While constructing new, large-scale software

applications is still necessary, our on-going research is

uncovering a number of emergent design practices by both

amateurs and professionals which are remarkably

participatory and user-driven in nature, and exist only as a

result of how current information ecologies are developing.

We support Robertson‟s argument [12] that PD research

should go beyond novel system development and study

everyday design practices such as adoption and tailoring.

Early PD work addressed challenges of appropriate design

under conditions of scarcity – how to get from no software

to some software that was actually useful. Now we have

the same challenge of appropriate design, but under

conditions of (partial) abundance – lots of applications and

services that can be selected and combined to get at least

near to what is needed.

In this paper we consider academic research collaboration,

and how various pre-existing computational technologies

can be assembled to support and transform work there. We

note that similar emergent design activities are occurring

both in top-down, government-funded collaboratories and

cyber-infrastructures, and in bottom-up, unfunded research

collaboration, as well as assemblies of technologies

occurring in parallel to „official‟ cyberinfrastructures. Thus

we have an opportunity for comparison between the two

types of activity, and an opportunity to investigate how

lessons learned from one activity might benefit the other.

PATCHWORK PROTOTYPING

We have been involved (as both observers and participants)

with several groups developing collaborative systems. In

each group we noted ad hoc prototyping and development

strategies that emerged somewhat independent of each

other but were remarkably similar. Subsequently, we have

collected anecdotal evidence of similar approaches being

used elsewhere, both in academic settings but also in

commercial in-house software development.

We call this approach patchwork prototyping (see [5, 6] for

more detail). It is an example of the kind of emergent PD

activity that current information ecologies enable. It

involves using combinations of FLOSS, web services,

mash-ups, and locally developed code in order to create,

test and rapidly iterate high-fidelity prototypes which users

can integrate into their daily work activity, and is thus true

“design in use” [4]. It has three major components:

 Rapid iteration of high-fidelity prototypes;

 Incorporation of the prototypes by the end users into

their daily work activities;

 Extensive collection of feedback facilitated by an

insider to the user community.

When integrated, these components enable developers to

access and respond to users‟ needs while those needs are

evolving. In the process, the ever-changing prototype

serves as a mediator for the articulation work that needs to

occur for the users to establish new work practices.

For example, one group (consisting of system developers

and representatives of the intended users, chiefly academic

faculty and graduate students) was building a

cyberinfrastructure for environmental engineers. The team

was not merely trying to articulate their requirements, but

also to understand what the technology could provide in

terms of collaborative support and data sharing and how

this might change the way that they did their research. As

such, the design process was necessarily exploratory. The

evolving system was used as part of the planning and

management processes of the project, necessarily involving

the sharing of various documents, and so being a more

authentic test of both the software and what was needed.

Patchwork prototyping is a type of cooperative prototyping

[1, 8]; however it blends the design and implementation

phases of the development process, because the prototype

is incorporated almost immediately into users‟ everyday

activities, and because production-scale modules can

gradually be introduced as they are developed to replace

the FLOSS applications used as prototypes to uncover the

requirements. The method has five stages, and an iteration

normally takes no longer than a week:

1. Make an educated guess about what the target system

might look like;

2. Select tools which support some aspect of the desired

functionality;

3. Integrate the tools into a rough composite;

4. Deploy the prototype, solicit feedback from users;

5. Reflect on the experience of prototype building and on

the user feedback, and repeat - quickly.

Patchwork prototyping works well for ill-defined situations

where neither the developers nor the users have a clear idea

of what they need the software to do, but rather have an

idealized vision of the kinds of things computing

technology might enable users to accomplish. Prototypes

can be radically altered by adding or removing FLOSS

components, changing default configurations, or by

reconfiguring the interface. Most patchwork prototypes are

web-based, making interface reconfigurations fast and

easy. Such rapid and visible change ensures that users do

not fixate on a particular design because they are presented

with a new version before they have time to grow

comfortable with its idiosyncrasies. This allows both

designers and users to explore a larger design space,

helping users develop a more concrete understanding of

what is possible with the technology, enabling them to

make better design recommendations. Furthermore, we

have observed that if users have problems with a particular

feature (e.g., a wiki or forum system), a different

implementation can rapidly be substituted; giving users an

opportunity to test whether their distaste is an issue

surrounding the particular interface or functionality, or the

whole idea.

Patchwork prototyping requires FLOSS. The ability to

modify the source code is vital to effective integration of

the modules, thus precluding the use of Commercial Off-

The-Shelf (COTS) software [2]. It seems the power of

patchwork prototyping to overcome common barriers to

successful information system design (e.g. [9, 10]) is a

direct result of current and emerging information ecologies.

Patchwork prototyping can be seen as an application of

many of the methods developed in PD, but exploiting the

possibilities of pre-existing software. It can be compared to

other rapid prototyping and development techniques

including paper prototyping. Due to its use of pre-existing

software, it is very fast, but still results in a working usable

(and testable) system. It also seems to support discussions

with end-users – in part because they may be familiar with

some of the existing applications, or can immediately try

them as deployed in authentic activities. This helps

discussions about creating new requirements for an

envisaged system that will involve combinations of

functionalities in those applications, but often in new,

interesting ways with additional tailoring and

supplementary functionality. As such it emulates some of

the creativity embodied in the design of mashups by expert

programmers (combining existing functionalities and

interfaces in new ways), but in a manner that does not

require computational expertise.

We are not claiming to have invented or refined a new PD

technique. Rather we are noting a phenomenon that we

believe to be widespread – that the availability of existing

software is allowing much more design by composition,

instead of solely design from scratch. Of course, patchwork

prototyping has some significant limitations. The obvious

one is that it needs appropriate existing code or web

services to create the prototype quickly. It also requires

skilled and sensitive developers, and significant leadership

and feedback collection by user-group leaders and insiders

in order to have rapid and effective iteration cycles.

Finally, all the projects where we observed patchwork

prototyping had a decent amount of funding to pay

developers and maintain the computing infrastructure.

COMPOSED SOCIOTECHNICAL INFRASTRUCTURES

Recently, we have been informally considering how

researchers manage to collaborate even if they have no or

minimal funding to explicitly support this. Our purpose is

to study the process by which both amateur and

professional designers engage in the process of composing

collaboration infrastructures out of at-hand or otherwise

easily available applications or services. It should be noted

that this is in the context of an overall well-funded research

university. This is not a study of resource poverty. Rather,

it is the study of how in a setting of widespread access to

computers, technology, bandwidth, and skills it is possible

to put together and tailor workable collaborative systems

with little additional support.

This is not necessarily a matter of building an integrated

cyberinfrastructure using components, but can simply

involve downloading or using a combination of

applications and web services, manually copying data

between them in order to get the job done in an ad hoc but

fast and low cost way. It can be as simple as working on a

distributed project using a combination of email,

spreadsheets, Google docs, Skype, Yahoo groups, Flickr,

and various personal and public calendars. These services

are typically sufficiently lightweight that it is easy both to

assemble them and to try out and integrate new services,

keeping them and replacing an older one or rejecting and

reverting as needed. With small groups the process of

trialing and switching is so fast that it seems to be

unnecessary to do traditional requirements capture and

assessment activities. Unlike patchwork prototyping, this

use often involves COTS software. This is harder to

integrate seamlessly into an overall designed application,

but files can still be integrated even if simply by manual

online sharing and copy-paste, gaining the advantages of

familiarity and relatively low cost, without requiring

substantial technical knowledge – a kind of bricolage [3].

Existing work on technological selection, adoption,

adaptation, tailoring, appropriation and innovation can

inform this analysis. However, that work normally focuses

on a single, integrated application (e.g., [4]), and here the

whole point is that there are multiple applications, and

more available all the time to be composed or replaced – a

kind of artful integration [13].

While our research is still in progress, we believe this

activity bears some resemblance to patchwork prototyping,

but that it is often severely constrained by a lack of

resources. For example, we have encountered several cases

of researchers who have knowledge of fields such as

CSCW, PD, and HCI, who have engaged with system

design and development, but who have settled for

infrastructures that were minimally useful because they had

limited access to server space, the access they did get took

considerable time to negotiate (or they simply gave up and

used free web services), they don‟t have time to perform

maintenance activities on the infrastructure themselves, and

they don‟t have funds to hire someone to perform the

maintenance activities for them. As a result, even though

they recognize the need for requirements gathering,

prototyping, and iteration of designs, they had no ability to

engage in such activity, and felt that some infrastructure to

support their tasks was better than no infrastructure.

Other people we have observed have created very complex

collaboration infrastructures by creatively integrating

software packages into a community workflow. However,

these infrastructures are often unstable, as the resources

they utilize are often temporary in nature. Thus, the users

are constantly migrating software platforms, services, and

collaboration spaces. Such arrangements work for small-

scale and short-term projects that can be completed, and

whose product can be stored on more stable infrastructures.

While it would seem that such a solution would not always

work so well in supporting sustained, long-term

collaboration, the collaborative activity we have observed

so far has outlasted several changes in infrastructure,

suggesting that as long as some aspect of the infrastructure

remains relatively stable (file storage space, web-service

email storage, etc.), changing infrastructures can be worked

around as long as the groups are small enough and long-

term relationships between the group members have been

established. However, this does not solve the problem of

how to enable researchers to collaborate who are interested

in working together but have no history of collaboration,

and thus still need to work out shared practices,

vocabulary, standards, and compatible values.

BOTTOM-UP VS. TOP-DOWN COLLABORATORIES

The funding model for collaboratories, cyberinfrastructures

and related resources (such as e-science and e-social

science in the UK) follow a model that we would call „top-

down‟. That is, a resource is funded centrally (usually from

a research foundation such as NSF or JISC) that will be of

use to a reasonably large, distributed research community

enabling both greater collaboration and the sharing and use

of scarce equipment, technical resources and high end

computing power. The approach may or may not use PD

techniques to support the activity. PD may be considered

unnecessary as the main participant stakeholders – the

researchers themselves – are central to writing and

obtaining the grant. The original work on patchwork

prototyping occurred in such top-down settings.

However, many researchers are interested in collaborating

on projects for which there is limited or no grant funding to

support. In many such cases, only a minimal infrastructure

is needed to support their research. As a result they are

unable to make the case that the work involves innovative,

indeed glamorous, computing work.

As a result of these two factors, many potentially fruitful

collaborations go unrealized. We believe that the

lightweight ad hoc methods of creating infrastructures by

composition outlined in the previous section might be a

productive solution – a indigenous bottom-up approach to

development using locally available resources – and one

having intriguing similarities with appropriate technology

work in development studies.

In addition to bottom-up prototyping that can help poorly

resourced projects, we suspect that considerable bottom-up

activity also occurs amongst researchers in funded top-

down cyberinfrastructure settings. To date we only have

anecdotal evidence for this, but it seems that the recurrent

practice of workarounds and the abundance of and ease of

using web services allows for the emergence of a „shadow

cyberinfrastructure‟, bypassing the main one in cases where

time, convenience or necessity mean that the official

system does not quite do what is needed and a grubby

combination of applications is good enough for the job.

If permitted, bottom-up activities amongst teams can also

support innovation in a top-down project. Karasti &

Syrjänen‟s “cherry-picking octopus” [7] is a powerful

example of how heterogeneity in approaches at the site

level allows experimentation and “prototyping into

consensus”.

The bottom-up approach can never provide the high-end

functionalities that the top-down approach promises.

However it is fast, and very robust under changing needs

and opportunities. It remains to be seen whether the

bottom-up and top-down infrastructures are necessarily in

competition with each other. Are bottom-up approaches

simply symptoms of the inflexibility or slowness to

completion of the top-down designed system? Are they the

bazaar that springs up alongside while the cathedral is

laboriously constructed over centuries [11]? Are they just

an accumulation of workarounds by idiosyncratic

nonconformists, a kind of black market in officially

unsanctioned and unsupported collaborative technologies

that system administrators are unable or unwilling to

incorporate into the official infrastructure?

Or can top-down and bottom-up methods meet in the

middle, combining the strengths of each in a truly robust,

powerful, adaptable and flexible infrastructure? Can the

bottom-up approach create an exploratory testbed of ideas

that can feed requirements into the larger systematic

development activities of the top-down approach? Can the

techniques of patchwork prototyping that require skilled

system developers to implement be integrated with the less

powerful but faster techniques of assembling and tailoring

applications? Can the PD-inspired approach of the former

fit with the open innovation [14] approach of the latter?

What kind of robust base-infrastructure (servers,

permissions, archiving, etc.) can support bottom-up

innovation in creating the next tier of infrastructure? We

are not sure, but acknowledging the existence of, bottom-

up methods and then taking steps to understand how they

operate in various contexts of rich and poor resources

seems a good place to begin.

CONCLUSION

By using available applications, code and web services it is

possible to support both top-down cyberinfrastructure

development using traditional PD techniques to enable

rapid development testing and reflection on use, as well as

bottom-up cyberinfrastructure development where end

users assemble resources to create a lightweight ad hoc

environment to support collaborative interaction. It remains

to be seen if these two approaches are necessarily in

competition or if they can be productively combined.

REFERENCES

1. Bødker, S. & Grønbæk, K. (1991) Cooperative

Prototyping: Users and Designers in Mutual Activity.

International Journal of Man-Machine Studies, 34(3)

453-478.

2. Boehm, B.W. & Abts, C. (1999) COTS Integration:

Plug and Pray? IEEE Computer, 32(1) 135-138.

3. Büscher, M., Gill, S., Mogensen, P. & Shapiro, D.

(2001) Landscapes of Practice: Bricolage as a Method

for Situated Design. Computer Supported Cooperative

Work 10(1) 1-28.

4. Dittrich, Y., Eriksen, S., & Hansson, C. (2002) PD in

the Wild; Evolving Practices of Design in Use.

Proceedings of PDC 2002. 124-134

5. Floyd, I.R., Jones, M.C., Rathi, D. & Twidale, M.B

(2007) Web Mash-ups and Patchwork Prototyping:

User-driven technological innovation with Web 2.0 and

Open Source Software. Proceedings of HICSS 2007.

6. Jones, M.C., Floyd, I.R., Twidale, M.B. (2007)

Patchwork Prototyping with Open-Source Software. In

St. Amant, K. & Still, B. (Eds), The Handbook of

Research on Open Source Software Idea Group, Inc.

7. Karasti, H. & Syrjänen, A-L. (2004) Artful

infrastructuring in two cases of community PD.

Proceedings of PDC 2004, 20 – 30.

8. Kensing, F., & Blomberg, J. (1998) Participatory

Design: Issues and Concerns. Computer Supported

Cooperative Work, 7(3-4) 167-185.

9. Luke, R., Clement, A., Terada, R., Bortolussi, D.,

Booth, C., Brooks, D., & Christ, D. The Promise and

Perils of a Participatory Approach to Developing an

Open Source Community Learning Network.

Proceedings of PDC 2004, 11-19.

10. Pekkola, S., Kaarilahti, N., & Pohjola, P. (2006)

Towards Formalised End-User Participation in

Information Systems Development Process: Bridging

the Gap between Participatory Design and ISD

Methodologies. Proceedings of PDC 2006. 21-30.

11. Raymond, E.S. (1999) The Cathedral and the Bazaar,

Sebastopol, CA: O'Reilly Press.

12. Robertson, T. (1998) Shoppers and Tailors:

Participative Practices in Small Australian Design

Companies. Computer Supported Cooperative Work 7,

205-221.

13. Suchman, L. (2002) Located Accountabilities in

Technology Production. Scandinavian Journal of

Information Systems 14(2) 91-105.

14. von Hippel, E. (2005) Democratizing Innovation.

Cambridge, MA: MIT Press.

